Daniel Kienzle

Wissenschaftlicher Mitarbeiter
Lehrstuhl für Maschinelles Lernen und Maschinelles Sehen
Telefon: +49 (821) 598 2451
E-Mail:
Raum: 1018 (N)
Sprechzeiten: Nach Vereinbarung
Adresse: Universitätsstraße 6a, 86159 Augsburg

Lebenslauf

Ausbildung:
2021--Now   Promotion in Machine learning & Computer vision an der Universität Augsburg
2018--2021   Master of Science in Theoretischer Festkörperphysik an der Universität Augsburg
2015--2018    Bachelor of Science in Physik an der Universität Augsburg
 
 
Forschungsinteressen:
  • Physics in Machine Learning
  • Object Localization
  • Pose Estimation
  • Self-supervised learning
 
Über mich:  
Ich bin ein Masterabsolvent der Physik, der nun einen Doktortitel im Bereich des Maschinellen Lernens und der Bildverarbeitung anstrebt. Ich interessiere mich für die Verknüpfung von Deep Learning, Bildverarbeitung und Physik. In meiner bisherigen Forschung habe ich mich mit der Frage beschäftigt, wie sich physikalisches Wissen für den Trainingsprozess eines Neuronalen Netzwerkes ausnutzen lässt.

Publikationen

2024 | 2023 | 2022

2024

Julian Lorenz, Alexander Pest, Daniel Kienzle, Katja Ludwig and Rainer Lienhart. 2024. A fair ranking and new model for panoptic scene graph generation. DOI: 10.1007/978-3-031-73030-6_9
BibTeX | RIS | DOI

Daniel Kienzle, Marco Kantonis, Robin Schön and Rainer Lienhart. in press. Segformer++: efficient token-merging strategies for high-resolution semantic segmentation.
PDF | BibTeX | RIS | URL

Luuk H. Boulogne, Julian Lorenz, Daniel Kienzle, Robin Schön, Katja Ludwig, Rainer Lienhart, Simon Jegou, Guang Li, Cong Chen, Qi Wang, Derik Shi, Mayug Maniparambil, Dominik Müller, Silvan Mertes, Niklas Schröter, Fabio Hellmann, Miriam Elia, Ine Dirks, Matias Nicolas Bossa, Abel Diaz Berenguer, Tanmoy Mukherjee, Jef Vandemeulebroucke, Hichem Sahli, Nikos Deligiannis, Panagiotis Gonidakis, Ngoc Dung Huynh, Imran Razzak, Reda Bouadjenek, Mario Verdicchio, Pasquale Borrelli, Marco Aiello, James A. Meakin, Alexander Lemm, Christoph Russ, Razvan Ionasec, Nikos Paragios, Bram van Ginneken and Marie-Pierre Revel Dubios. 2024. The STOIC2021 COVID-19 AI challenge: applying reusable training methodologies to private data. DOI: 10.1016/j.media.2024.103230
PDF | BibTeX | RIS | DOI

Daniel Kienzle, Katja Ludwig, Julian Lorenz and Rainer Lienhart. 2024. Towards learning monocular 3D object localization from 2D labels using the physical laws of motion. DOI: 10.1109/3DV62453.2024.00155
PDF | BibTeX | RIS | DOI

Robin Schön, Daniel Kienzle and Rainer Lienhart. in press. WSESeg: introducing a dataset for the segmentation of winter sports equipment with a baseline for interactive segmentation.
BibTeX | RIS | URL

2023

Daniel Kienzle, Julian Lorenz, Robin Schön, Katja Ludwig and Rainer Lienhart. 2023. COVID detection and severity prediction with 3D-ConvNeXt and custom pretrainings. DOI: 10.1007/978-3-031-25082-8_33
PDF | BibTeX | RIS | DOI

Katja Ludwig, Daniel Kienzle, Julian Lorenz and Rainer Lienhart. 2023. Detecting arbitrary keypoints on limbs and skis with sparse partly correct segmentation masks. DOI: 10.1109/WACVW58289.2023.00051
PDF | BibTeX | RIS | DOI

Julian Lorenz, Florian Barthel, Daniel Kienzle and Rainer Lienhart. 2023. Haystack: a panoptic scene graph dataset to evaluate rare predicate classes. DOI: 10.1109/ICCVW60793.2023.00013
PDF | BibTeX | RIS | DOI

2022

Katja Ludwig, Daniel Kienzle and Rainer Lienhart. 2022. Recognition of freely selected keypoints on human limbs. DOI: 10.1109/CVPRW56347.2022.00397
PDF | BibTeX | RIS | DOI

Betreute Abschlussarbeiten

  • Gregor Böhm, Uncertainity for 3D Ball Localization, Projektmodul, September 2024
  • Felix Lettowsky, Comparison of Different Methods for 3D Ball Localization on Various Datasets, Masterarbeit, September 2024
  • Norman Szabo, Segmentation Using Attention Masks, Projektmodul, August 2024
  • Marco Kantonis, Analysis of Token-Merging Techniques for Transformer-Based Semantic Segmentation, Masterarbeit, Mai 2024
  • Lukas Bayer, Incorporating Token Merging Into Transformers for Efficient Ground State Search of Quantum Spin Models Using minSR, Bachelorarbeit, Mai 2024
  • Simon Reichert, Exploring Image Registration Techniques for XANES Data using Traditional Methods and Machine Learning Techniques, Bachelorarbeit, April 2024
  • Felix Lettowsky, Verwendung der Brax-Engine zum Erlernen dreidimensionaler Objektlokalisierung, Projektmodul, März 2024
  • Clarissa Dinu-Fröhlich, Erstellung von Modellen zur Semantischen Segmentierung von Körperteilen unter Verwendung von schwachen Segementierungsmasken, Projektmodul, Juni 2023
  • Jan Claar, Measurement of Droplets in Vaporized Fluids using Machine Learning Techniques, Bachelorarbeit, März 2023
  • Jonas Kell, Investigation of transformer architectures for geometrical graph structures and their application to two-dimensional spin systems, Bachelorarbeit, Oktober 2022
  • Dennis Knof, Generating artificial datasets with MuJoCo, Betriebspraktikum, August 2022
  • Patrick Hopf, Zeitliche Dynamik in Quantenbillards mit Hilfe neuronaler Netze, Bachelorarbeit, Dezember 2021

 

 

 

Suche