Jonathan Wurth

Wissenschaftlicher Mitarbeiter
Lehrstuhl für Organic Computing
Telefon: +49 821 598 69256
E-Mail:
Raum: 2044 (W)
Adresse: Am Technologiezentrum 8, 86159 Augsburg

Forschungsschwerpunkte

My research focus is on the automated design of metaheuristic algorithms (AAD) for complex continuous optimization problems. Metaheuristics are nature-inspired stochastic optimization methods highly effective for problems where exact methods fail or are inapplicable. When practitioners need to repeatedly solve similar optimization instances, automatically designed custom algorithms can significantly outperform generic approaches.
I'm especially interested metaheuristics with good anytime performance (that can be interrupted at any time and still produce good solutions), and the unique challenges of real-world optimization problems that often combine multiple difficult characteristics: high dimensionality, expensive evaluations, multiple objectives, or noise. 
Key research areas and interests include:

  • Anytime performance
  • Hyperparameter-tuning and algorithm configuration
  • (Parallel) algorithm portfolios and island models
  • Integration of machine learning techniques with metaheuristics
  • Bayesian optimization
  • Modular metaheuristic frameworks

 

Publikationen

2024 | 2023 | 2022

2024

Jonathan Wurth, Helena Stegherr, Michael Heider and Jörg Hähner. 2024. GRAHF: a hyper-heuristic framework for evolving heterogeneous island model topologies. DOI: 10.1145/3638529.3654136
BibTeX | RIS | DOI

2023

Helena Stegherr, Leopold Luley, Jonathan Wurth, Michael Heider and Jörg Hähner. 2023. A framework for modular construction and evaluation of metaheuristics.
PDF | BibTeX | RIS

Michael Heider, Helena Stegherr, David Pätzel, Roman Sraj, Jonathan Wurth, Benedikt Volger and Jörg Hähner. 2023. Discovering rules for rule-based machine learning with the help of novelty search. DOI: 10.1007/s42979-023-02198-x
PDF | BibTeX | RIS | DOI

Jonathan Wurth, Helena Stegherr, Michael Heider, Leopold Luley and Jörg Hähner. 2023. Fast, flexible, and fearless: a rust framework for the modular construction of metaheuristics. DOI: 10.1145/3583133.3596335
BibTeX | RIS | DOI

Michael Heider, Helena Stegherr, Roman Sraj, David Pätzel, Jonathan Wurth and Jörg Hähner. 2023. SupRB in the context of rule-based machine learning methods: a comparative study. DOI: 10.1016/j.asoc.2023.110706
BibTeX | RIS | DOI

2022

Michael Heider, Helena Stegherr, David Pätzel, Roman Sraj, Jonathan Wurth, Benedikt Volger and Jörg Hähner. 2022. Approaches for rule discovery in a learning classifier system. DOI: 10.5220/0011542000003332
PDF | BibTeX | RIS | DOI

Jonathan Wurth, Michael Heider, Helena Stegherr, Roman Sraj and Jörg Hähner. 2022. Comparing different metaheuristics for model selection in a supervised learning classifier system. DOI: 10.1145/3520304.3529015
PDF | BibTeX | RIS | DOI

Michael Heider, Helena Stegherr, Jonathan Wurth, Roman Sraj and Jörg Hähner. 2022. Investigating the impact of independent rule fitnesses in a learning classifier system. DOI: 10.1007/978-3-031-21094-5_11
PDF | BibTeX | RIS | DOI

Michael Heider, Helena Stegherr, Jonathan Wurth, Roman Sraj and Jörg Hähner. 2022. Separating rule discovery and global solution composition in a learning classifier system. DOI: 10.1145/3520304.3529014
PDF | BibTeX | RIS | DOI

Lebenslauf

seit 2023

Wissenschaftlicher Mitarbeiter am Lehrstuhl Organic Computing der Universität Augsburg

2021–2023 Wissenschaftliche Hilfskraft am Lehrstuhl Organic Computing der Universität Augsburg
2021–2023 Master-Studium im Fach Informatik an der Universität Augsburg
2018–2021 Bachelor-Studium im Fach Informatik an der Universität Augsburg

Lehrveranstaltungen

(Angewandte Filter: Semester: aktuelles | Institutionen: Organic Computing | Dozenten: Jonathan Wurth | Vorlesungsarten: alle)
Name Semester Typ
Studentische Arbeiten am Lehrstuhl Organic Computing Sommersemester 2025 sonstige
Seminar Organic Computing (Master) Sommersemester 2025 Seminar
Übung zu Ad-hoc und Sensornetze Sommersemester 2025 Übung
Organic Computing II Sommersemester 2025 Vorlesung
Ad-hoc und Sensornetze Sommersemester 2025 Vorlesung
Übung zu Organic Computing II Sommersemester 2025 Übung
Seminar Organic Computing (Bachelor) Sommersemester 2025 Seminar

Suche