| 
    André Uschmajew and Andreas Zeiser
    Discontinuous Galerkin discretization of conservative dynamical low-rank approximation schemes for the Vlasov–Poisson equation
 BIT Numerical Mathematics 65,  43  (2025)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    Markus Bachmayr, Henrik Eisenmann and André Uschmajew
    Dynamical low-rank tensor approximations to high-dimensional parabolic problems: existence and convergence of spatial discretizations
 Numerische Mathematik 157,  781-822  (2025)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    Guillaume Olikier, André Uschmajew and Bart Vandereycken
    Gauss–Southwell type descent methods for low-rank matrix optimization
 Journal of Optimization Theory and Applications 206,  6  (2025)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    Daniel Kressner, Tingting Ni and André Uschmajew
    On the approximation of vector-valued functions by volume sampling
 Journal of Complexity 86,  101887  (2025)
 PDF  | BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    André Uschmajew and Andreas Zeiser
    Dynamical low-rank approximation of the Vlasov–Poisson equation with piecewise linear spatial boundary
 BIT Numerical Mathematics 64,  19  (2024)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    Antonio Bellon, Mareike Dressler, Vyacheslav Kungurtsev, Jakub Marecek and André Uschmajew
    Time-varying semidefinite programming: path following a Burer-Monteiro factorization
 SIAM Journal on Optimization 34,  1-26  (2024)
 BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    Mareike Dressler, André Uschmajew and Venkat Chandrasekaran
    Kronecker product approximation of operators in spectral norm via alternating SDP
 SIAM Journal on Matrix Analysis and Applications 44,  1693-1708  (2023)
 BibTeX | RIS | DOI
 | 
  
   | 
    Ivan V. Oseledets, Maxim V. Rakhuba and André Uschmajew
    Local convergence of alternating low‐rank optimization methods with overrelaxation
 Numerical Linear Algebra with Applications 30,  e2459  (2023)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    Henrik Eisenmann and André Uschmajew
    Maximum relative distance between real rank-two and rank-one tensors
 Annali di Matematica Pura ed Applicata 202,  993-1009  (2023)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    Henrik Eisenmann, Felix Krahmer, Max Pfeffer and André Uschmajew
    Riemannian thresholding methods for row-sparse and low-rank matrix recovery
 Numerical Algorithms 93,  669-693  (2023)
 PDF  | BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    Tobias Lehmann, Max-K. von Renesse, Alexander Sambale and André Uschmajew
    A note on overrelaxation in the Sinkhorn algorithm
 Optimization Letters 16,  2209-2220  (2022)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    André Uschmajew and Bart Vandereycken
    A note on the optimal convergence rate of descent methods with fixed step sizes for smooth strongly convex functions
 Journal of Optimization Theory and Applications 194,  364-373  (2022)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    Edoardo Di Napoli, Paolo Bientinesi, Jiajia Li and André Uschmajew
    Editorial: high-performance tensor computations in scientific computing and data science
 Frontiers in Applied Mathematics and Statistics 8,  1038885  (2022)
 PDF  | BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    Christian Krumnow, Max Pfeffer and André Uschmajew
    Computing eigenspaces with low rank constraints
 SIAM Journal on Scientific Computing 43,  A586-A608  (2021)
 BibTeX | RIS | DOI
 | 
  
   | 
    André Uschmajew, M. Bachmayr, H. Eisenmann and E. Kieri
    Dynamical low-rank approximation for parabolic problems
 Oberwolfach Reports 17,  1800-1802  (2021)
 BibTeX | RIS | DOI
 In: Mini-Workshop: Computational Optimization on Manifolds
 | 
  
   | 
    Markus Bachmayr, Henrik Eisenmann, Emil Kieri and André Uschmajew
    Existence of dynamical low-rank approximations to parabolic problems
 Mathematics of Computation 90,  1799-1830  (2021)
 BibTeX | RIS | DOI
 | 
  
   | 
    Wolfgang Hackbusch and André Uschmajew
    Modified iterations for data-sparse solution of linear systems
 Vietnam Journal of Mathematics 49,  493-512  (2021)
 PDF  | BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    Andrei Agrachev, Khazhgali Kozhasov and André Uschmajew
    Chebyshev polynomials and best rank-one approximation ratio
 SIAM Journal on Matrix Analysis and Applications 41,  308-331  (2020)
 BibTeX | RIS | DOI
 | 
  
   | 
    André Uschmajew and Bart Vandereycken
    Geometric methods on low-rank matrix and tensor manifolds
 in: Handbook of variational methods for nonlinear geometric data, ed. by Philipp Grohs, Martin Holler and Andreas Weinmann,  261-313  (Springer: Cham, 2020)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    André Uschmajew and Bart Vandereycken
    On critical points of quadratic low-rank matrix optimization problems
 IMA Journal of Numerical Analysis 40,  2626-2651  (2020)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    Anh-Huy Phan, Andrzej Cichocki, André Uschmajew, Petr Tichavsky, George Luta and Danilo P. Mandic
    Tensor networks for latent variable analysis: novel algorithms for tensor train approximation
 IEEE Transactions on Neural Networks and Learning Systems 31,  4622-4636  (2020)
 BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    Seyedehsomayeh Hosseini and André Uschmajew
    A gradient sampling method on algebraic varieties and application to nonsmooth low-rank optimization
 SIAM Journal on Optimization 29,  2853-2880  (2019)
 BibTeX | RIS | DOI
 | 
  
   | 
    Max Pfeffer, André Uschmajew, Adriana Amaro and Ulrich Pfeffer
    Data fusion techniques for the integration of multi-domain genomic data from uveal melanoma
 Cancers 11,  1434  (2019)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    Seyedehsomayeh Hosseini, D. Russell Luke and André Uschmajew
    Tangent and normal cones for low-rank matrices
 in: Nonsmooth optimization and its applications, ed. by Seyedehsomayeh Hosseini, Boris S. Mordukhovich and André Uschmajew,  (International Series of Numerical Mathematics ; 170)  45-53  (Springer: Cham, 2019)
 BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    Ivan V. Oseledets, Maxim V. Rakhuba and André Uschmajew
    Alternating least squares as moving subspace correction
 SIAM Journal on Numerical Analysis 56,  3459-3479  (2018)
 BibTeX | RIS | DOI
 | 
  
   | 
    Zhening Li, Yuji Nakatsukasa, Tasuku Soma and André Uschmajew
    On orthogonal tensors and best rank-one approximation ratio
 SIAM Journal on Matrix Analysis and Applications 39,  400-425  (2018)
 BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    Seyedehsomayeh Hosseini and André Uschmajew
    A Riemannian gradient sampling algorithm for nonsmooth optimization on manifolds
 SIAM Journal on Optimization 27,  173-189  (2017)
 BibTeX | RIS | DOI
 | 
  
   | 
    Yuji Nakatsukasa, Tasuku Soma and André Uschmajew
    Finding a low-rank basis in a matrix subspace
 Mathematical Programming 162,  325-361  (2017)
 BibTeX | RIS | DOI
 | 
  
   | 
    Wolfgang Hackbusch and André Uschmajew
    On the interconnection between the higher-order singular values of real tensors
 Numerische Mathematik 135,  875-894  (2017)
 PDF  | BibTeX | RIS | DOI
 | 
  
   | 
    Wolfgang Hackbusch, Daniel Kressner and André Uschmajew
    Perturbation of higher-order singular values
 SIAM Journal on Applied Algebra and Geometry 1,  374-387  (2017)
 BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    Daniel Kressner and André Uschmajew
    On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems
 Linear Algebra and its Applications 493,  556-572  (2016)
 BibTeX | RIS | DOI
 | 
  
   | 
    Lars Karlsson, Daniel Kressner and André Uschmajew
    Parallel algorithms for tensor completion in the CP format
 Parallel Computing 57,  222-234  (2016)
 BibTeX | RIS | DOI
 | 
  
   | 
    Markus Bachmayr, Reinhold Schneider and André Uschmajew
    Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations
 Foundations of Computational Mathematics 16,  1423-1472  (2016)
 BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    André Uschmajew
    A new convergence proof for the higher-order power method and generalizations
 Pacific Journal of Optimization 11,  309-321  (2015)
 BibTeX | RIS | URL
 | 
  
   | 
    Reinhold Schneider and André Uschmajew
    Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality
 SIAM Journal on Optimization 25,  622-646  (2015)
 BibTeX | RIS | DOI
 | 
  
   | 
    André Uschmajew and Bart Vandereycken
    Greedy rank updates combined with Riemannian descent methods for low-rank optimization
 in: 2015 International Conference on Sampling Theory and Applications (SampTA), 25-29 May 2015, Washington, DC, USA, ed. by Stephen Casey, Kevin Duke, Michael Robinson,  420-424  (IEEE: Piscataway, NJ, 2015)
 BibTeX | RIS | DOI
 | 
  
   | 
    Zhening Li, André Uschmajew and Shuzhong Zhang
    On convergence of the maximum block improvement method
 SIAM Journal on Optimization 25,  210-233  (2015)
 BibTeX | RIS | DOI
 | 
  
   | 
    André Uschmajew
    Some results concerning rank-one truncated steepest descent directions in tensor spaces
 in: 2015 International Conference on Sampling Theory and Applications (SampTA), 25-29 May 2015, Washington, DC, USA, ed. by Stephen Casey, Kevin Duke, Michael Robinson,  415-419  (IEEE: Piscataway, NJ, 2015)
 BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    Reinhold Schneider and André Uschmajew
    Approximation rates for the hierarchical tensor format in periodic Sobolev spaces
 Journal of Complexity 30,  56-71  (2014)
 BibTeX | RIS | DOI
 | 
  
   | 
    André Uschmajew and Bart Vandereycken
    Line-search methods and rank increase on low-rank matrix varieties
 in: 2014 International Symposium on Nonlinear Theory and its Applications (NOLTA2014), Luzern, Switzerland, September 14-18, 2014,  52-55  (IEICE: Luzern, 2014)
 BibTeX | RIS | DOI
 | 
  
   | 
    Daniel Kressner, Michael Steinlechner and André Uschmajew
    Low-rank tensor methods with subspace correction for symmetric eigenvalue problems
 SIAM Journal on Scientific Computing 36,  A2346-A2368  (2014)
 BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    André Uschmajew, D. Kressner and M. Steinlechner
    Low-rank tensor methods with subspace correction for symmetric eigenvalue problems
 Oberwolfach Reports 10,  3296-3298  (2013)
 BibTeX | RIS | DOI
 In: Numerical solution of PDE eigenvalue problems, 17 November - 23 November 2013; report no. 56/2013
 | 
  
   | 
    Thorsten Rohwedder and André Uschmajew
    On local convergence of alternating schemes for optimization of convex problems in the tensor train format
 SIAM Journal on Numerical Analysis 51,  1134-1162  (2013)
 BibTeX | RIS | DOI
 | 
  
   | 
    André Uschmajew and Bart Vandereycken
    The geometry of algorithms using hierarchical tensors
 Linear Algebra and its Applications 439,  133-166  (2013)
 BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    Sambasiva Rao Chinnamsetty, Hongjun Luo, Wolfgang Hackbusch, Heinz-Jürgen Flad and André Uschmajew
    Bridging the gap between quantum Monte Carlo and F12-methods
 Chemical Physics 401,  36-44  (2012)
 BibTeX | RIS | DOI
 | 
  
   | 
    André Uschmajew
    Local convergence of the alternating least squares algorithm for canonical tensor approximation
 SIAM Journal on Matrix Analysis and Applications 33,  639-652  (2012)
 BibTeX | RIS | DOI
 | 
  
 
  
  
   | 
    André Uschmajew
    Regularity of tensor product approximations to square integrable functions
 Constructive Approximation 34,  371-391  (2011)
 BibTeX | RIS | DOI
 | 
  
   | 
    André Uschmajew
    The regularity of tensor product approximations in L2 in dependence of the target function
 Oberwolfach Reports 8,  1802-1804  (2011)
 BibTeX | RIS | DOI
 In: Mathematical methods in quantum chemistry, June 26th - July 2nd, 2011, report no. 32/2011
 | 
  
 
  
  
   | 
    André Uschmajew
    Well-posedness of convex maximization problems on Stiefel manifolds and orthogonal tensor product approximations
 Numerische Mathematik 115,  309-331  (2010)
 BibTeX | RIS | DOI
 |