SPP/SPPL Proteases in Disease Context
SPP/SPPL proteases are increasingly discussed as therapeutic targets for treatment of neurodegenerative, immunological and oncological diseases as well as of viral infections and malaria. Cellular glycan structures also appear to play an important role in the development of these diseases, but mechanisms of this phenomenon are not yet understood in detail.
Our research indicates that SPPL3 is the main protease for the release of the luminal domain of various glycosyltransferases and glycosidases. Since the catalytic center of glycan-modifying enzymes is located in their ectodomain, release of these enzymes reduces their catalytic activity in the Golgi Aparatus. Consequently, the amount of expressed SPPL3 influences the glycosylation status of secreted and membrane proteins. Thus, increased SPPL3 expression results in hypoglycosylationof many secretory and membrane proteins, while reduced levels of SPPL3 induce hyperglycosylated proteins.
In addition, various representatives of the SPP/SPPL protease family have a pronounced expression in different types of immune cells and are involved in the differentiation of these cells.
We therefore aim to understand how activity and expression of SPP/SPPL proteases are changed in the context of diseases, with a focus on understanding SPPL3-related changes in glycan patterns in context of tumor development and metastasis.

Regulation and Physiological Function of SPP/SPPL proteases
SPP/SPPL proteases cleave a number of different substrates, including a variety of glycan-modifying enzymes. Thus, changing expression or activity of these proteases can quickly change molecular processes in the cell.
For instance, altered SPPL3 expression changes the glycan pattern of many secretory and membrane proteins and, thus, also that of the extracellular matrix. But cleavage of immunologically relevant proteins such as TNFαor CD74 can also quickly change function and metabolism of cells.
Despite this function as a molecular switch and intensive research, to date neither the regulation nor the physiological function of the SPP/SPPL proteases is fully understood. Our ongoing research projects therefore aim to identify additional substrates for these enzymes and to elucidate the molecular mechanisms of their regulation. In particular, we are investigating how food components and other environmental factors influence these proteases.

Voss Matthias, Künzel Ulrike, Higel Fabian, Kuhn Peer‐Hendrik, Colombo Alessio, Fukumori Akio, Haug‐Kröper Martina, Klier Bärbel, Grammer Gudula, Seidl Andreas, Schröder Bernd, Obst Reinhard, Steiner Harald, Lichtenthaler Stefan F., Haass Christian, Fluhrer Regina.
Shedding of glycan‐modifying enzymes by signal peptide peptidase‐like 3 (SPPL3) regulates cellular N‐glycosylation.
https://doi.org/10.15252/embj.201488375
PDF | BibTeX | RIS | DOI |
Substrate Recognition and Processing by SPP/SPPL proteases
In contrast to soluble proteases, intramembrane proteases recognize and cleave their substrates within the hydrophobic core of the membrane. However, the mechanisms of substrate recognition and processing as well as the molecular requirements that qualify a substrate as such are still not fully understood. The best-studied intramembraneproteasein this regard is γ-secretase. Extensive studies over the past 25 years suggest a multistep cleavage model for substrate processing and for recognition the dynamics of substrates transmembrane domain seems to play an important role. Studies on the SPPL2b protease indicate that this protease uses a very similar cleavage model.
Whether other members of the SPP/SPPL family use comparable mechanisms for substrate processing and how substrates can be predicted with the help of artificial intelligence (AI) is subject of ongoing and future research projects.

Partners
The research group of Prof. Dr. Regina Fluhrer collaborates with many leading national and international institutions.
In a longstanding cooperation with Prof. Dr. Bernd Schröder from the Institute of Physiological Chemistry at the Technical University of Dresden, the research group of Prof. Fluhreris investigating the physiological function of SPP/SPPL proteases. The collaboration particularly enables the efficient use of various model systems.
In a joint study, we were able to show that SPPL2c, a so far uncharacterized representative of the GxGDaspartyl proteases, impacts on the vesicular transport in cells and is involved in the efficient maturation of male germ cells.
Publications
Papadopoulou Alkmini A, Müller Stephan A, Mentrup Torben, Shmueli Merav D, Niemeyer Johannes, Haug-Kröper Martina, von Blume Julia, Mayerhofer Artur, Feederle Regina, Schröder Bernd, Lichtenthaler Stefan F, Fluhrer Regina. Signal peptide peptidaselike 2c (SPPL2c) impairs vesicular transport and cleavage of SNARE proteins. EMBO reports 2019;20(3):e46451.
Niemeyer Johannes, Mentrup Torben, Heidasch Ronny, Müller Stehphan A, Biswas Uddipta, Meyer Rieke, Papadoupoulou Alkmini A, Dederer Verena, Haug-Kröper Martina, Adamski Vivian, Lüllmann-Rauch Renate, Bergmann Martin, Mayerhofer Artur, Saftig Paul, Wennemuth Gunther, Jessberger Rolf, Fluhrer Regina, Lichtenthaler Stefan F, Lemberg Marius K, Schröder Bernd. The intramembrane protease SPPL2c promotes male germ cell development by cleaving phospholamban. EMBO reports 2019;20(3):e46449.
Together with the Chair for Neuroproteomicsat the German Center for Neurodegenerative Diseases, DZNE and at the Technical University of Munich, the research group of Prof. Fluhrer aims to identify new substrates for intramembrane proteases and to determine the cleavage sites within these substrates.
With help of modern mass spectrometry, we significantly expanded the range of known substrates for both the SPPL3 and the SPPL2c protease.
Publications
Papadopoulou Alkmini A, Müller Stephan A, Mentrup Torben, Shmueli Merav D, Niemeyer Johannes, Haug-Kröper Martina, von Blume Julia, Mayerhofer Artur, Feederle Regina, Schröder Bernd, Lichtenthaler Stefan F, Fluhrer Regina. Signal peptide peptidase-like 2c (SPPL2c) impairs vesicular transport and cleavage of SNARE proteins. EMBO reports 2019;20(3):e46451.
Kuhn Peer-Hendrik, Voss Matthias, Haug-Kröper Martina, Schröder Bernd, Schepers Ute, Bräse Stefan, Haass Christian, Lichtenthaler Stefan F., Fluhrer Regina. Secretome analysis identifies novel signal peptide peptidase-like 3 (Sppl3) substrates and reveals a role of Sppl3 in multiple Golgi glycosylation pathways. Molecular & Cellular Proteomics 2015;14(6):1584-1598.
In collaboration with Prof. Dr. Nathan Singh at the Washington University School of Medicine, Saint Louis, we were able to show that malignant B cells with lower SPPL3 expression have an increased resistance to treatment with chimeric antigen receptor (CAR) T cells against CD19. CAR T cell therapy against CD19 is used to treat acute lymphoblastic leukemia (ALL). However, the development of resistance is a major problem. Variations in SPPL3 expression can explain the phenomenon and, thus, are the basis for further developing this therapy in the future.
Publication
Amanda Heard, Jack H Landmann, Ava R Hansen, Alkmini Papadopolou, Yu-Sung Hsu, Mehmet Emrah Selli, John M Warrington, John Lattin, Jufang Chang, Helen Ha, Martina Haug-Kroeper, Balraj Doray, Saar Gill, Marco Ruella, Katharina E Hayer, Matthew D Weitzman, Abby M Green, Regina Fluhrer, Nathan Singh. Antigen glycosylation regulates efficacy of CAR T cells targeting CD19 Nat Commun. 2022 Jun 11;13(1):3367.
Funding
Intramural Research Funding
„Forschungspotenziale besser nutzen!“, University of Augsburg – Funding since 2024
Third Party Funding
DFG Research Grant: Biological function and molecular mechanisms of intramembrane proteoylsisby Signal Peptide Peptidase Like-3 (SPPL3) - Funding since 2014
Project within the DFG Research Group FOR 2290: Substrate recognition and binding by Signal Peptide Peptidase-like 2 (SPPL2) family - Funding since 2015-2023
DFG Research Grant: Mechanisms and Function of Intramembrane Proteolysis by the γ-secretase homologous Signal Peptide Peptidase-like Proteases (SPPL) - Funding 2006 - 2014
Forschungsgroßgeräte
Cell metabolism-analyzer - Funding in 2022
Publications
2025 |
Schneider Felicitas Magdalena, Pochert Nicole, Schittek Fritzi, Köpke Melitta Beatrice, Wild Carl Mathis, Veh Johanna Marie, Rohrmoser Natalie Renate, Kuhn Christina, Urban Birgit, Kahl Klaus-Henning, Schneider Mariella, Mattmer Angelika, Hinske Ludwig Christian, Fluhrer Regina, Golas Monika M., Untch Michael, Kuehn Thorsten, Banys-Paluchowski Maggie, Jeschke Udo, Traidl-Hoffmann Claudia, Dannecker Christian, Ditsch Nina.
Macrophage polarization is associated with postoperative seroma development in breast cancer in the SerMa pilot cohort.
https://doi.org/10.1038/s41598-025-17139-2
PDF | BibTeX | RIS | DOI |
Tever Onur Kerem, Mentrup Torben, Chinn Ivan Kingyue, Ishikuma Hitoshi, Fluhrer Regina, Schmitz Marc, Wehner Rebekka, Behrendt Rayk, Chinen Javier, Schröder Bernd.
The DNase TREX1 is a substrate of the intramembrane protease SPP with implications for disease pathogenesis.
https://doi.org/10.1007/s00018-025-05645-5
PDF | BibTeX | RIS | DOI |
Schlosser Christine, Sharrouf Kinda, Papadopoulou Alkmini A., Haug-Kröper Martina, Singh Suman, Johler Maximilian, Pettinger Jonas, Horn Henrike, Koch Marco, Hoeppner Sabine, Fluhrer Regina.
The N-terminal PA domains of signal-peptide-peptidase-like 2 (SPPL2) proteases impact on TNFα cleavage.
https://doi.org/10.1038/s42003-025-08102-y
PDF | BibTeX | RIS | DOI |
2024 |
Sharrouf Kinda, Schlosser Christine, Mildenberger Sandra, Fluhrer Regina, Hoeppner Sabine.
In vitro cleavage of tumor necrosis factor α (TNFα) by Signal-Peptide-Peptidase-like 2b (SPPL2b) resembles mechanistic principles observed in the cellular context.
https://doi.org/10.1016/j.cbi.2024.111006
PDF | BibTeX | RIS | DOI |
Maccioni Riccardo, Travisan Caterina, Badman Jack, Zerial Stefania, Wagener Annika, Andrade-Talavera Yuniesky, Picciau Federico, Grassi Caterina, Chen Gefei, Lemoine Laetitia, Fisahn André, Jiang Richeng, Fluhrer Regina, Mentrup Torben, Schröder Bernd, Nilsson Per, Tambaro Simone.
Signal peptide peptidase-like 2b modulates the amyloidogenic pathway and exhibits an Aβ-dependent expression in Alzheimer's disease.
https://doi.org/10.1016/j.pneurobio.2024.102585
PDF | BibTeX | RIS | DOI |
Mentrup Torben, Leinung Nadja, Patel Mehul, Fluhrer Regina, Schröder Bernd.
The role of SPP/SPPL intramembrane proteases in membrane protein homeostasis.
https://doi.org/10.1111/febs.16941
PDF | BibTeX | RIS | DOI |
2023 |
Smit P., Buehring-Uhle C., Nather C., Negraschus A., Goldmann U., Papadopoulou Alkmini A., Riviere J., Morath V., Henkel E., Bromberger T., Goetze K., Heinz L., Fluhrer Regina, Moser M., Superti-Furga G., Bassermann F., Eichner R..
Inhibiting MGAT1-mediated N-glycosylation reduces proliferation and adhesion of AML cells and increases affinities of anti-SLC3A2 directed immunotherapies [Abstract].
https://doi.org/10.1159/000533576
PDF | BibTeX | RIS | DOI |
Hoeppner Sabine, Schröder Bernd, Fluhrer Regina.
Structure and function of SPP/SPPL proteases: insights from biochemical evidence and predictive modeling.
https://doi.org/10.1111/febs.16968
PDF | BibTeX | RIS | DOI |
2022 |
Heard Amanda, Landmann Jack H., Hansen Ava R., Papadopolou Alkmini, Hsu Yu-Sung, Selli Mehmet Emrah, Warrington John M., Lattin John, Chang Jufang, Ha Helen, Haug-Kröper Martina, Doray Balraj, Gill Saar, Ruella Marco, Hayer Katharina E., Weitzman Matthew D., Green Abby M., Fluhrer Regina, Singh Nathan.
Antigen glycosylation regulates efficacy of CAR T cells targeting CD19.
https://doi.org/10.1038/s41467-022-31035-7
PDF | BibTeX | RIS | DOI |
Papadopoulou Alkmini A., Stelzer Walter, Silber Mara, Schlosser Christine, Spitz Charlotte, Haug-Kröper Martina, Straub Tobias, Müller Stephan A., Lichtenthaler Stefan F., Muhle-Goll Claudia, Langosch Dieter, Fluhrer Regina.
Helical stability of the GnTV transmembrane domain impacts on SPPL3 dependent cleavage.
https://doi.org/10.1038/s41598-022-24772-8
PDF | BibTeX | RIS | DOI |
Mentrup Torben, Stumpff-Niggemann Anna Yamina, Leinung Nadja, Schlosser Christine, Schubert Katja, Wehner Rebekka, Tunger Antje, Schatz Valentin, Neubert Patrick, Gradtke Ann-Christine, Wolf Janina, Rose-John Stefan, Saftig Paul, Dalpke Alexander, Jantsch Jonathan, Schmitz Marc, Fluhrer Regina, Jacobsen Ilse D., Schröder Bernd.
Phagosomal signalling of the C-type lectin receptor Dectin-1 is terminated by intramembrane proteolysis.
https://doi.org/10.1038/s41467-022-29474-3
PDF | BibTeX | RIS | DOI |
Bühring-Uhle C., Smit P., Negraschus A., Morath V., Goldmann U., Papadopoulou Alkmini A., Heider M., Riviere J., Götze K., Heinz L., Fluhrer Regina, Moser M., Superti-Furga G., Bassermann F., Eichner R..
SPPL3 and its substrate glycosyltransferases regulate the N-glycosylation of SLC3A2 and alter the affinities of anti-SLC3A2 immunotherapies in AML [Abstract].
https://doi.org/10.1159/000526456
PDF | BibTeX | RIS | DOI |
2021 |
Heard Amanda, Selli Mehmet Emrah, Lattin John, Landmann Jack, Chang Jufang, Ha Helen, Doray Balraj, Ruella Marco, Gill Saar, Hayer Katharina E., Weitzman Matthew D., Green Abby M., Fluhrer Regina, Singh Nathan.
Antigen glycosylation is a central regulator of CAR T cell efficacy [Abstract].
https://doi.org/10.1182/blood-2021-146651
BibTeX | RIS | DOI |
2020 |
Spitz Charlotte, Schlosser Christine, Guschtschin-Schmidt Nadja, Stelzer Walter, Menig Simon, Götz Alexander, Haug-Kröper Martina, Scharnagl Christina, Langosch Dieter, Muhle-Goll Claudia, Fluhrer Regina.
Non-canonical shedding of TNFα by SPPL2a is determined by the conformational flexibility of its transmembrane helix.
https://doi.org/10.1016/j.isci.2020.101775
PDF | BibTeX | RIS | DOI |
Mentrup Torben, Cabrera-Cabrera Florencia, Fluhrer Regina, Schröder Bernd.
Physiological functions of SPP/SPPL intramembrane proteases.
https://doi.org/10.1007/s00018-020-03470-6
PDF | BibTeX | RIS | DOI |
Papadopoulou Alkmini A., Fluhrer Regina.
Signalling functions of intramembrane aspartyl-proteases.
https://doi.org/10.3389/fcvm.2020.591787
PDF | BibTeX | RIS | DOI |
Brugger Manuel S., Baumgartner Kathrin, Mauritz Sophie C. F., Gerlach Stefan C., Röder Florian, Schlosser Christine, Fluhrer Regina, Wixforth Achim, Westerhausen Christoph.
Vibration enhanced cell growth induced by surface acoustic waves as in vitro wound healing model.
https://doi.org/10.1073/pnas.2005203117
PDF | BibTeX | RIS | DOI |
2019 |
Mentrup Torben, Theodorou Kosta, Cabrera-Cabrera Florencia, Helbig Andreas O., Happ Kathrin, Gijbels Marion, Gradtke Ann-Christine, Rabe Björn, Fukumori Akio, Steiner Harald, Tholey Andreas, Fluhrer Regina, Donners Marjo, Schröder Bernd.
Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis.
https://doi.org/10.1084/jem.20171438
PDF | BibTeX | RIS | DOI |
Fluhrer Regina, Hampe Wolfgang, editors.
Biochemie hoch 2 und Molekularbiologie.
BibTeX | RIS |
Fluhrer Regina.
Intramembrane proteases in neurodegenerative diseases.
PDF | BibTeX | RIS | URL |
Fluhrer Regina.
Intramembrane proteases in the immune system.
PDF | BibTeX | RIS | URL |
Papadopoulou Alkmini A., Müller Stephan A, Mentrup Torben, Shmueli Merav D, Niemeyer Johannes, Haug‐Kröper Martina, von Blume Julia, Mayerhofer Artur, Feederle Regina, Schröder Bernd, Lichtenthaler Stefan F., Fluhrer Regina.
Signal peptide peptidase‐like 2c (SPPL2c) impairs vesicular transport and cleavage of SNARE proteins.
https://doi.org/10.15252/embr.201846451
PDF | BibTeX | RIS | DOI |
Niemeyer Johannes, Mentrup Torben, Heidasch Ronny, Müller Stephan A, Biswas Uddipta, Meyer Rieke, Papadopoulou Alkmini A., Dederer Verena, Haug‐Kröper Martina, Adamski Vivian, Lüllmann-Rauch Renate, Bergmann Martin, Mayerhofer Artur, Saftig Paul, Wennemuth Gunther, Jessberger Rolf, Fluhrer Regina, Lichtenthaler Stefan F., Lemberg Marius K, Schröder Bernd.
The intramembrane protease SPPL2c promotes male germ cell development by cleaving phospholamban.
https://doi.org/10.15252/embr.201846449
PDF | BibTeX | RIS | DOI |
Fluhrer Regina, Schröder Bernd.
What is the role of the intramembrane proteases in cancer?.
PDF | BibTeX | RIS | URL |
2018 |
Fluhrer Regina.
A unique family of intramembrane proteases.
https://doi.org/10.26320/SCIENTIA179
PDF | BibTeX | RIS | DOI |
Fluhrer Regina.
Health report: the challenge of cleaving proteins in the membrane.
PDF | BibTeX | RIS | URL |
Fluhrer Regina.
Intramembrane proteases - regulators of cellular pathways.
PDF | BibTeX | RIS | URL |
Lichtenthaler Stefan F., Lemberg Marius K., Fluhrer Regina.
Proteolytic ectodomain shedding of membrane proteins in mammals - hardware, concepts, and recent developments.
https://doi.org/10.15252/embj.201899456
PDF | BibTeX | RIS | DOI |
2017 |
Jules Felix, Sauvageau Etienne, Dumaresq-Doiron Karine, Mazzaferri Javier, Haug-Kröper Martina, Fluhrer Regina, Costantino Santiago, Lefrancois Stephane.
CLN5 is cleaved by members of the SPP/SPPL family to produce a mature soluble protein.
https://doi.org/10.1016/j.yexcr.2017.04.024
PDF | BibTeX | RIS | DOI |
Mentrup Torben, Fluhrer Regina, Schröder Bernd.
Latest emerging functions of SPP/SPPL intramembrane proteases.
https://doi.org/10.1016/j.ejcb.2017.03.002
PDF | BibTeX | RIS | DOI |
Mentrup Torben, Loock Ann-Christine, Fluhrer Regina, Schröder Bernd.
Signal peptide peptidase and SPP-like proteases: possible therapeutic targets?.
https://doi.org/10.1016/j.bbamcr.2017.06.007
PDF | BibTeX | RIS | DOI |
2016 |
Hüttl Susann, Helfrich F., Mentrup Torben, Held S., Fukumori Akio, Steiner Harald, Saftig Paul, Fluhrer Regina, Schroder B..
Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74.
https://doi.org/10.1042/bcj20160156
PDF | BibTeX | RIS | DOI |
2015 |
Mentrup Torben, Häsler Robert, Fluhrer Regina, Saftig Paul, Schröder Bernd.
A cell-based assay reveals nuclear translocation of intracellular domains released by SPPL proteases.
https://doi.org/10.1111/tra.12287
PDF | BibTeX | RIS | DOI |
Kamp Frits, Winkler Edith, Trambauer Johannes, Ebke Amelie, Fluhrer Regina, Steiner Harald.
Intramembrane proteolysis of β-amyloid precursor protein by γ-secretase is an unusually slow process.
https://doi.org/10.1016/j.bpj.2014.12.045
PDF | BibTeX | RIS | DOI |
Fleck Daniel, Voss Matthias, Brankatschk Ben, Giudici Camilla, Hampel Heike, Schwenk Benjamin, Edbauer Dieter, Fukumori Akio, Steiner Harald, Kremmer Elisabeth, Haug-Kröper Martina, Rossner Moritz J., Fluhrer Regina, Willem Michael, Haass Christian.
Proteolytic processing of neuregulin 1 type III by three intramembrane-cleaving proteases.
https://doi.org/10.1074/jbc.m115.697995
PDF | BibTeX | RIS | DOI |
Kuhn Peer-Hendrik, Voss Matthias, Haug-Kröper Martina, Schröder Bernd, Schepers Ute, Bräse Stefan, Haass Christian, Lichtenthaler Stefan F., Fluhrer Regina.
Secretome analysis identifies novel signal peptide peptidase-like 3 (Sppl3) substrates and reveals a role of Sppl3 in multiple Golgi glycosylation pathways.
https://doi.org/10.1074/mcp.m115.048298
PDF | BibTeX | RIS | DOI |
2014 |
Fluhrer Regina.
Intramembrane cleaving proteases (I-CLiPs) as guardians of shuttling proteins.
https://doi.org/10.4161/cc.28089
PDF | BibTeX | RIS | DOI |
Voss Matthias, Künzel Ulrike, Higel Fabian, Kuhn Peer‐Hendrik, Colombo Alessio, Fukumori Akio, Haug‐Kröper Martina, Klier Bärbel, Grammer Gudula, Seidl Andreas, Schröder Bernd, Obst Reinhard, Steiner Harald, Lichtenthaler Stefan F., Haass Christian, Fluhrer Regina.
Shedding of glycan‐modifying enzymes by signal peptide peptidase‐like 3 (SPPL3) regulates cellular N‐glycosylation.
https://doi.org/10.15252/embj.201488375
PDF | BibTeX | RIS | DOI |
Schneppenheim Janna, Hüttl Susann, Kruchen Anne, Fluhrer Regina, Müller Ingo, Saftig Paul, Schneppenheim Reinhard, Martin Christa L., Schröder Bernd.
Signal-peptide-peptidase-like 2a is required for CD74 intramembrane proteolysis in human B cells.
https://doi.org/10.1016/j.bbrc.2014.07.051
PDF | BibTeX | RIS | DOI |
Schneppenheim Janna, Hüttl Susann, Mentrup Torben, Lüllmann-Rauch Renate, Rothaug M., Engelke Michael, Dittmann Kai, Dressel Ralf, Araki M., Araki K., Wienands Jürgen, Fluhrer Regina, Saftig Paul, Schroder B..
The intramembrane proteases signal peptide peptidase-like 2a and 2b have distinct functions in vivo.
https://doi.org/10.1128/mcb.00038-14
PDF | BibTeX | RIS | DOI |
2013 |
Voss Matthias, Schröder Bernd, Fluhrer Regina.
Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases.
https://doi.org/10.1016/j.bbamem.2013.03.033
PDF | BibTeX | RIS | DOI |
Poggi Marjorie, Kara Imène, Brunel Jean-Michel, Landrier Jean-François, Govers Roland, Bonardo Bernadette, Fluhrer Regina, Haass Christian, Alessi Marie-Christine, Peiretti Franck.
Palmitoylation of TNF alpha is involved in the regulation of TNF receptor 1 signalling.
https://doi.org/10.1016/j.bbamcr.2012.11.009
PDF | BibTeX | RIS | DOI |
Bronckers Antonius LJJ, Gueneli Nur, Lüllmann-Rauch Renate, Schneppenheim Janna, Moraru Andreea P, Himmerkus Nina, Bervoets Theodore J, Fluhrer Regina, Everts Vincent, Saftig Paul, Schröder Bernd.
The intramembrane protease SPPL2A is critical for tooth enamel formation.
https://doi.org/10.1002/jbmr.1895
PDF | BibTeX | RIS | DOI |
Zahn Claudia, Kaup Matthias, Fluhrer Regina, Fuchs Hendrik.
The transferrin receptor-1 membrane stub undergoes intramembrane proteolysis by signal peptide peptidase-like 2b.
https://doi.org/10.1111/febs.12176
PDF | BibTeX | RIS | DOI |
2012 |
Voss Matthias, Fukumori Akio, Kuhn Peer-Hendrik, Künzel Ulrike, Klier Bärbel, Grammer Gudula, Haug-Kröper Martina, Kremmer Elisabeth, Lichtenthaler Stefan F., Steiner Harald, Schröder Bernd, Haass Christian, Fluhrer Regina.
Foamy virus envelope protein is a substrate for signal peptide peptidase-like 3 (SPPL3).
https://doi.org/10.1074/jbc.m112.371369
PDF | BibTeX | RIS | DOI |
Schneppenheim Janna, Dressel Ralf, Hüttl Susann, Lüllmann-Rauch Renate, Engelke Michael, Dittmann Kai, Wienands Jürgen, Eskelinen Eeva-Liisa, Hermans-Borgmeyer Irm, Fluhrer Regina, Saftig Paul, Schröder Bernd.
The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain.
https://doi.org/10.1084/jem.20121069
PDF | BibTeX | RIS | DOI |
2011 |
Fluhrer Regina, Kamp Frits, Grammer Gudula, Nuscher Brigitte, Steiner Harald, Beyer Klaus, Haass Christian.
The nicastrin ectodomain adopts a highly thermostable structure.
https://doi.org/10.1515/bc.2011.169
PDF | BibTeX | RIS | DOI |
Fluhrer Regina, Martin Lucas, Klier Bärbel, Haug-Kröper Martina, Grammer Gudula, Nuscher Brigitte, Haass Christian.
The α-helical content of the transmembrane domain of the British dementia protein-2 (Bri2) determines its processing by signal peptide peptidase-like 2b (SPPL2b).
https://doi.org/10.1074/jbc.m111.328104
PDF | BibTeX | RIS | DOI |
2010 |
Fukumori Akio, Fluhrer Regina, Steiner Harald, Haass Christian.
Three-amino acid spacing of presenilin endoproteolysis suggests a general stepwise cleavage of gamma-secretase-mediated intramembrane proteolysis.
https://doi.org/10.1523/jneurosci.1443-10.2010
PDF | BibTeX | RIS | DOI |
2009 |
Fluhrer Regina, Steiner Harald, Haass Christian.
Intramembrane proteolysis by signal peptide peptidases: a comparative discussion of GXGD-type aspartyl proteases.
https://doi.org/10.1074/jbc.r800040200
PDF | BibTeX | RIS | DOI |
Fluhrer Regina, Haass Christian.
Intramembrane proteolysis by γ-secretase and signal peptide peptidases.
https://doi.org/10.1007/978-3-540-87941-1_2
PDF | BibTeX | RIS | DOI |
Martin Lucas, Fluhrer Regina, Haass Christian.
Substrate requirements for SPPL2b-dependent regulated intramembrane proteolysis.
https://doi.org/10.1074/jbc.m807485200
PDF | BibTeX | RIS | DOI |
2008 |
Steiner Harald, Fluhrer Regina, Haass Christian.
Intramembrane proteolysis by γ-secretase.
https://doi.org/10.1074/jbc.r800010200
PDF | BibTeX | RIS | DOI |
Fluhrer Regina, Fukumori Akio, Martin Lucas, Grammer Gudula, Haug-Kröper Martina, Klier Bärbel, Winkler Edith, Kremmer Elisabeth, Condron Margaret M., Teplow David B., Steiner Harald, Haass Christian.
Intramembrane proteolysis of GXGD-type aspartyl proteases is slowed by a familial Alzheimer disease-like mutation.
https://doi.org/10.1074/jbc.m806092200
PDF | BibTeX | RIS | DOI |
2007 |
Prager Kai, Wang-Eckhardt Lihua, Fluhrer Regina, Killick Richard, Barth Esther, Hampel Heike, Haass Christian, Walter Jochen.
A structural switch of presenilin 1 by glycogen synthase kinase 3beta-mediated phosphorylation regulates the interaction with beta-catenin and its nuclear signaling.
https://doi.org/10.1074/jbc.m608437200
PDF | BibTeX | RIS | DOI |
Martin Lucas, Fluhrer Regina, Reiss Karina, Kremmer Elisabeth, Saftig Paul, Haass Christian.
Regulated intramembrane proteolysis of Bri2 (Itm2b) by ADAM10 and SPPL2a/SPPL2b.
https://doi.org/10.1074/jbc.m706661200
PDF | BibTeX | RIS | DOI |
Fluhrer Regina, Haass Christian.
Signal peptide peptidases and gamma-secretase: cousins of the same protease family?.
https://doi.org/10.1159/000101835
PDF | BibTeX | RIS | DOI |
2006 |
Fluhrer Regina, Grammer Gudula, Israel Lars, Condron Margaret M., Haffner Christof, Friedmann Elena, Böhland Claudia, Imhof Axel, Martoglio Bruno, Teplow David B., Haass Christian.
A γ-secretase-like intramembrane cleavage of TNFα by the GxGD aspartyl protease SPPL2b.
https://doi.org/10.1038/ncb1450
PDF | BibTeX | RIS | DOI |
2005 |
Krawitz Peter, Haffner Christof, Fluhrer Regina, Steiner Harald, Schmid Bettina, Haass Christian.
Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3.
https://doi.org/10.1074/jbc.m501645200
PDF | BibTeX | RIS | DOI |
2003 |
Fluhrer Regina, Multhaup Gerd, Schlicksupp Andrea, Okochi Masayasu, Takeda Masatoshi, Lammich Sven, Willem Michael, Westmeyer Gil, Bode Wolfram, Walter Jochen, Haass Christian.
Identification of a beta-secretase activity, which truncates amyloid beta-peptide after its presenilin-dependent generation.
https://doi.org/10.1074/jbc.m211485200
PDF | BibTeX | RIS | DOI |
Fluhrer Regina, Friedlein Arno, Haass Christian, Walter Jochen.
Phosphorylation of presenilin 1 at the caspase recognition site regulates its proteolytic processing and the progression of apoptosis.
https://doi.org/10.1074/jbc.m306653200
PDF | BibTeX | RIS | DOI |
Fluhrer Regina.
Zwei neuartige Aspartylproteasen BACE-1 und BACE-2: Charakterisierung und Vergleich der katalytischen Spezifitäten bei der Proteolyse des Alzheimer-β-Amyloid-Vorläufer-Proteins.
PDF | BibTeX | RIS | URL München, Univ., Diss., 2003 |
2002 |
Fluhrer Regina, Capell Anja, Westmeyer Gil, Willem Michael, Hartung Bianka, Condron Margaret M., Teplow David B., Haass Christian, Walter Jochen.
A non-amyloidogenic function of BACE-2 in the secretory pathway.
https://doi.org/10.1046/j.1471-4159.2002.00908.x
PDF | BibTeX | RIS | DOI |
Capell Anja, Meyn Liane, Fluhrer Regina, Teplow David B., Walter Jochen, Haass Christian.
Apical sorting of beta-secretase limits amyloid beta-peptide production.
https://doi.org/10.1074/jbc.m109119200
PDF | BibTeX | RIS | DOI |
2001 |
Walter Jochen, Fluhrer Regina, Hartung Bianka, Willem Michael, Kaether Christoph, Capell Anja, Lammich Sven, Multhaup Gerd, Haass Christian.
Phosphorylation regulates intracellular trafficking of beta-secretase.
https://doi.org/10.1074/jbc.m011116200
PDF | BibTeX | RIS | DOI |